3.1 Coding Theory – Preliminaries
نویسندگان
چکیده
In today’s lecture we’ll go over some preliminaries to the coding theory we will need throughout the course. In particular, we will go over the Walsh-Hadamard code and the Blum-Luby-Rubinfeld linearity test. In the following lecture we will use these tools to show that NP ⊆ PCP [poly, O(1)] (recall that our goal is ultimately to bring the polynomial amount of randomness down to a logarithmic amount). A common feature throughout the course is that we will use codes to construct PCPs and vice-versa, construct useful codes from PCPs.
منابع مشابه
Curves, Cryptography and Coding theory
2 Basic Cryptography 3 2.1 Preliminaries: Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Modern Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Block Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Moving forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملNotes on : Math 6710 : Applied Linear Operators and Spectral Theory ( Applied Mathematics ) Chris
3 Linear operators 12 3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Bounded linear operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Linear functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 Algebraic dual spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5 Dual spaces . . . . ....
متن کاملSchur-weyl Duality
Introduction 1 1. Representation Theory of Finite Groups 2 1.1. Preliminaries 2 1.2. Group Algebra 4 1.3. Character Theory 5 2. Irreducible Representations of the Symmetric Group 8 2.1. Specht Modules 8 2.2. Dimension Formulas 11 2.3. The RSK-Correspondence 12 3. Schur-Weyl Duality 13 3.1. Representations of Lie Groups and Lie Algebras 13 3.2. Schur-Weyl Duality for GL(V ) 15 3.3. Schur Functor...
متن کاملAffine Deligne–lusztig Varieties at Infinite Level (preliminary Version)
Part 1. Two analogues of Deligne–Lusztig varieties for p-adic groups 5 2. Affine Deligne–Lusztig varieties at infinite level 5 2.1. Preliminaries 5 2.2. Deligne–Lusztig sets/varieties 7 2.3. Affine Deligne–Lusztig varieties and covers 8 2.4. Scheme structure 9 3. Case G = GLn, b basic, w Coxeter 12 3.1. Notation 12 3.2. Basic σ-conjucacy classes. Isocrystals 12 3.3. The admissible subset of Vb ...
متن کاملConvex functions on symmetric spaces and geometric invariant theory for weighted configurations on flag manifolds
3 Convex functions on symmetric spaces 11 3.1 Geometric preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Metric spaces with curvature bounds . . . . . . . . . . . . . . 11 3.1.2 Hadamard spaces . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.3 Symmetric spaces of noncompact type . . . . . . . . . . . . . 15 3.1.4 Auxiliary results . . . . . . . . . . . . . . . ....
متن کامل